"Mountain regions are uniquely sensitive to changes in climate "

At the recent Mountain Climate Sciences Symposium, participants underscored that *climate system monitoring*—including the biosphere, hydrosphere and cryospheric was at the top of the priority list for sustainable management of western resources, in light of predicted future climate conditions under an enhanced greenhouse effect.

DEPARTURE OF 2004 SPRING PULSE DATE FROM 1950-1999 AVERAGE

Mar-Apr 2004 a remarkably warm and early spring

High elevation climate stations are very sparse!

Most of California's
precip (and temp) gauges are
sited in low
elevation population
centers. Yet,
a lot of our concern
is for climate
changes in mid-high
elevations.

California Precip Stations with at Least 10 Years of Record by Elevation

from linear
lapse rate
high elevations
extrapolated from
low elevn obs
doesn't work

Merced obs 2

steeper
lapse rate,
high elevations
(cooler)
Perfoms better

California's present network of low elevation **observations** are inadequate to describe snow accumulation and snow melt in Sierra Nevada

Courtesy of Noah Knowles

The Western North
America warming
by 1-3dgC since 1950
has given earlier
snowmelt and spring
ecosystem responses

Warmer storms and interstorm periods but how has warming occurred over high elevations?

Climate warming Dec, Jan Feb 7 modern climate models 2XCO2 over American cordillera

We need transects of weather and hydrological monitoring stations to survey processes and changes in mountain zones

